Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Helios Software

Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications
A computer program for modeling the optical behavior of reflecting solar concentrators. HELIOS is a flexible computer code for evaluating designs for central-receiver, parabolic-dish, and other reflecting solar-energy collector systems; for safety calculations on the threat to personnel and to the facility itself; for determination of how various input parameters alter the power collected; for design trade-offs; and for heliostat evaluations. Input variables include atmospheric transmission effects; reflector shape, surface, and suntracking errors; focusing and alignment strategies; receiver design; placement positions of the tower and mirrors; time-of-day and day-of-year for the calculation.
Published in Chapter:
Systems with Concentrating Solar Radiation
Saša R. Pavlović (University of Niš, Serbia) and Velimir P. Stefanović (University of Niš, Serbia)
DOI: 10.4018/978-1-4666-4450-2.ch031
Abstract
In this chapter, description and working principles of the parabolic trough power plants, solar tower power plants, parabolic dish power plants, and power plants with Fresnel reflectors in the world and their potential use in Serbia are given. In addition, the examples and technical characteristics of some concetrating solar power plants in the world are given. The cases in which solar cells are used to generate electrical energy are very rare. Solar systems referred as mid temperature (100–400 oC) are considered suitable for integration with industrial processes, cooling, and polygeneration systems through use of concentrating solar collectors. The results of this research may be applied in the construction of small solar systems, but also in the design and construction of large polygeneration systems. Physical and mathematical model is presented, as well as numerical procedure for predicting thermal performances of the P2CC (Parabolic-and-Circular Collector) solar concentrator.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR